首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1009篇
  免费   59篇
  2022年   3篇
  2021年   18篇
  2020年   4篇
  2019年   14篇
  2018年   18篇
  2017年   7篇
  2016年   21篇
  2015年   36篇
  2014年   47篇
  2013年   68篇
  2012年   62篇
  2011年   69篇
  2010年   43篇
  2009年   31篇
  2008年   61篇
  2007年   52篇
  2006年   78篇
  2005年   66篇
  2004年   61篇
  2003年   72篇
  2002年   53篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   10篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   10篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   8篇
  1982年   10篇
  1981年   6篇
  1980年   13篇
  1979年   6篇
  1978年   9篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1973年   4篇
  1968年   2篇
排序方式: 共有1068条查询结果,搜索用时 15 毫秒
61.
The intrinsic neurons of mushroom bodies (MBs), centers of olfactory learning in the Drosophila brain, are generated by a specific set of neuroblasts (Nbs) that are born in the embryonic stage and exhibit uninterrupted proliferation till the end of the pupal stage. Whereas MB provides a unique model to study proliferation of neural progenitors, the underlying mechanism that controls persistent activity of MB-Nbs is poorly understood. Here we show that Tailless (TLL), a conserved orphan nuclear receptor, is required for optimum proliferation activity and prolonged maintenance of MB-Nbs and ganglion mother cells (GMCs). Mutations of tll progressively impair cell cycle in MB-Nbs and cause premature loss of MB-Nbs in the early pupal stage. TLL is also expressed in MB-GMCs to prevent apoptosis and promote cell cycling. In addition, we show that ectopic expression of tll leads to brain tumors, in which Prospero, a key regulator of progenitor proliferation and differentiation, is suppressed whereas localization of molecular components involved in asymmetric Nb division is unaffected. These results as a whole uncover a distinct regulatory mechanism of self-renewal and differentiation of the MB progenitors that is different from the mechanisms found in other progenitors.  相似文献   
62.
Amphibian holoblastic cleavage in which all blastomeres contribute to any one of the three primary germ layers has been widely thought to be a developmental pattern in the stem lineage of vertebrates, and meroblastic cleavage to have evolved independently in each vertebrate lineage. In extant primitive vertebrates, agnathan lamprey and basal bony fishes also undergo holoblastic cleavage, and their vegetal blastomeres have been generally thought to contribute to embryonic endoderm. However, the present marker analyses in basal ray-finned fish bichir and agnathan lamprey embryos indicated that their mesoderm and endoderm develop in the equatorial marginal zone, and their vegetal cell mass is extraembryonic nutritive yolk cells, having non-cell autonomous meso-endoderm inducing activity. Eomesodermin (eomes), but not VegT, orthologs are expressed maternally in these animals, suggesting that VegT is a maternal factor for endoderm differentiation only in amphibian. The study raises the viewpoint that the lamprey/bichir type holoblastic development would have been ancestral to extant vertebrates and retained in their stem lineage; amphibian-type holoblastic development would have been acquired secondarily, accompanied by the exploitation of new molecular machinery such as maternal VegT.  相似文献   
63.
The RIG-I like receptor (RLR) comprises three homologues: RIG-I (retinoic acid-inducible gene I), MDA5 (melanoma differentiation-associated gene 5), and LGP2 (laboratory of genetics and physiology 2). Each RLR senses different viral infections by recognizing replicating viral RNA in the cytoplasm. The RLR contains a conserved C-terminal domain (CTD), which is responsible for the binding specificity to the viral RNAs, including double-stranded RNA (dsRNA) and 5′-triphosphated single-stranded RNA (5′ppp-ssRNA). Here, the solution structures of the MDA5 and LGP2 CTD domains were solved by NMR and compared with those of RIG-I CTD. The CTD domains each have a similar fold and a similar basic surface but there is the distinct structural feature of a RNA binding loop; The LGP2 and RIG-I CTD domains have a large basic surface, one bank of which is formed by the RNA binding loop. MDA5 also has a large basic surface that is extensively flat due to open conformation of the RNA binding loop. The NMR chemical shift perturbation study showed that dsRNA and 5′ppp-ssRNA are bound to the basic surface of LGP2 CTD, whereas dsRNA is bound to the basic surface of MDA5 CTD but much more weakly, indicating that the conformation of the RNA binding loop is responsible for the sensitivity to dsRNA and 5′ppp-ssRNA. Mutation study of the basic surface and the RNA binding loop supports the conclusion from the structure studies. Thus, the CTD is responsible for the binding affinity to the viral RNAs.  相似文献   
64.
A γ-hexachlorocyclohexane (HCH)-degrading bacterium, Sphingomonas sp. MM-1, was isolated from soil contaminated with HCH isomers. Cultivation of MM-1 in the presence of γ-HCH led to the detection of five γ-HCH metabolites, γ-pentachlorocyclohexene, 2,5-dichloro-2,5-cyclohexadiene-1,4-diol, 2,5-dichlorohydroquinone, 1,2,4-trichlorobenzene, and 2,5-dichlorophenol, strongly suggesting that MM-1 has the lin genes for γ-HCH degradation originally identified in the well-studied γ-HCH-degrading strain Sphingobium japonicum UT26. Southern blot, PCR amplification, and sequencing analyses indicated that MM-1 has seven lin genes for the conversion of γ-HCH to β-ketoadipate (six structural genes, linA to linF, and one regulatory gene, linR). MM-1 carried four plasmids, of 200, 50, 40, and 30 kb. Southern blot analysis revealed that all seven lin genes were dispersed across three of the four plasmids, and that IS6100, often found close to the lin genes, was present on all four plasmids.  相似文献   
65.
A series of 5-phenyliminobenzo[a]phenoxazine derivatives were synthesized. The in vitro antiprotozoal activities were evaluated against Plasmodium falciparum K1, Trypanosoma cruzi, Leishmania donovani and Trypanosoma brucei rhodesiense. N,N-Diethyl-5-((4-methoxyphenyl)imino)-5H-benzo[a]phenoxazin-9-amine shows IC(50)=0.040 μmol L(-1) with a selective index of 1425 against Plasmodium falciparum K1.  相似文献   
66.
The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-Δ43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing (≈ 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I(1,1)/I(1,0), indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-Δ43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-Δ43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.  相似文献   
67.
Female Ascotis selenaria (Geometridae) moths use 3,4-epoxy-(Z,Z)-6,9-nonadecadiene, which is synthesized from linolenic acid, as the main component of their sex pheromone. While the use of dietary linolenic or linoleic fatty acid derivatives as sex pheromone components has been observed in moth species belonging to a few families including Geometridae, the majority of moths use derivatives of a common saturated fatty acid, palmitic acid, as their sex pheromone components. We attempted to gain insight into the differentiation of pheromone biosynthetic pathways in geometrids by analyzing the desaturase genes expressed in the pheromone gland of A. selenaria. We demonstrated that a Δ11-desaturase-like gene (Asdesat1) was specifically expressed in the pheromone gland of A. selenaria in spite of the absence of a desaturation step in the pheromone biosynthetic pathway in this species. Further analysis revealed that the presumed transmembrane domains were degenerated in Asdesat1. Phylogenetic analysis demonstrated that Asdesat1 anciently diverged from the lineage of Δ11-desaturases, which are currently widely used in the biosynthesis of sex pheromones by moths. These results suggest that an ancestral Δ11-desaturase became dysfunctional in A. selenaria after a shift in pheromone biosynthetic pathways.  相似文献   
68.
In secretory granules and vesicles, membrane transporters have been predicted to permeate water molecules, ions and/or small solutes to swell the granules and promote membrane fusion. We have previously demonstrated that aquaporin-6 (AQP6), a water channel protein, which permeates anions, is localized in rat parotid secretory granules (Matsuki-Fukushima et al., Cell Tissue Res 332:73–80, 2008). Because the localization of AQP6 in other organs is restricted to cytosolic vesicles, the native function or functions of AQP6 in vivo has not been well determined. To characterize the channel property in granule membranes, the solute permeation-induced lysis of purified secretory granules is a useful marker. To analyze the role of AQP6 in secretory granule membranes, we used Hg2+, which is known to activate AQP6, and investigated the characteristics of solute permeability in rat parotid secretory granule lysis induced by Hg2+ (Hg lysis). The kinetics of osmotic secretory granule lysis in an iso-osmotic KCl solution was monitored by the decay of optical density at 540 nm using a spectrophotometer. Osmotic secretory granule lysis was markedly facilitated in the presence of 0.5–2.0 μM Hg2+, concentrations that activate AQP6. The Hg lysis was completely blocked by β-mercaptoethanol which disrupts Hg2+-binding, or by removal of chloride ions from the reaction medium. An anion channel blocker, DIDS, which does not affect AQP6, discriminated between DIDS-insensitive and sensitive components in Hg lysis. These results suggest that Hg lysis is required for anion permeability through the protein transporter. Hg lysis depended on anion conductance with a sequence of NO3 ? > Br? > I? > Cl? and was facilitated by acidic pH. The anion selectivity for NO3 ? and the acidic pH sensitivity were similar to the channel properties of AQP6. Taken together, it is likely that AQP6 permeates halide group anions as a Hg2+-sensitive anion channel in rat parotid secretory granules.  相似文献   
69.

Aims

Dietary flavonoid intake shows a significant inverse association with mortality from coronary heart disease, incidence of myocardial infarction and stroke. Quercetin is one of the most common flavonoids in our diet and has several favorable biological activities. Quercetin glucosides, which are enzymatically trans-glycosylated isoquercitrin, have high water-solubility and bioavailability compared with quercetin. Here, we investigated the effects of quercetin glucosides on collateral development in a murine hindlimb ischemia model.

Main methods

We induced hindlimb ischemia in 24- to 32-week-old male C3H/HeJ mice by resecting the right femoral artery. Then, 0.5% carboxymethyl cellulose (control) or quercetin glucosides (100 mg/kg/day) were administered daily by gavage. Blood flow was monitored weekly by laser Doppler imaging.

Key findings

Recovery of blood flow to the ischemic leg was significantly enhanced by quercetin glucosides (blood flow ratio at 4 weeks: control, 0.57 ± 0.11; quercetin glucosides, 0.95 ± 0.10, p < 0.05). Furthermore, anti-CD31 immunostaining revealed that quercetin glucosides increased capillary density in the ischemic muscle (control, 200 ± 24/mm2; quercetin glucosides, 364 ± 41/mm2, p < 0.01). Quercetin glucosides did not promote tumor growth. The beneficial effect of quercetin glucosides was abrogated in eNOS-deficient mice.

Significance

These results suggest that quercetin glucosides may have therapeutic potential to promote angiogenesis in ischemic tissue.  相似文献   
70.
Laboratory experiments were conducted to study the impact of laser irradiation on the larvae of the fouling barnacle Balanus amphitrite. Research pertaining to fouling invertebrate larvae‐laser interaction is sparse and, hence, data on this aspect were thought significant in order to consider pulsed low power laser irradiations as a possible future antifouling tool. Lethal and sub‐lethal impacts of four very low laser fluences, viz. 0.013, 0.025, 0.05 and 0.1 J cm‐2 for three different durations, viz. 2, 10 and 30 s were investigated. Three growth stages of barnacle larvae, viz. nauplii stage II, nauplii stage IV and cyprids were exposed to the mentioned laser fluences for different durations. While lethal impact was assessed immediately after and 1 d after irradiation, sub‐lethal impacts were studied by monitoring the success rate of the irradiated nauplii in reaching the cyprid stage. In addition, the swimming speed of VIth stage nauplii after irradiation was studied. In the case of cyprids, in addition to the mortality measurement immediately after and 1 d after irradiation, the settlement rate was investigated. In all the above experiments, non‐irradiated larvae served as controls. The results showed an increase in mortality with increasing laser fluence and duration of irradiation. Irradiation for 2 s resulted in significant mortality in nauplii, while it was less in the case of cyprids. In IInd stage nauplii, the mortality immediately after irradiation for 2 s varied from 14.8±2.12 to 97.1±4.1% for laser fluences of 0.013 and 0.1 J cm‐2, respectively. However, in cyprids, the mortality immediately after irradiation for 2 s varied from 12.2±3 to 13.4±1.2% for fluences of 0.013 and 0.1 J cm‐2, respectively. The mortality in IVth stage nauplii was less than that for IInd stage nauplii but more than that for cyprids. There was a significant increase in mortality with time after irradiation. The formation of cyprids from the irradiated larvae was significantly less than that observed for non‐irradiated larvae. Also, the irradiated larvae showed a significantly slower swimming speed compared to the control samples. The settlement rate in cyprids was reduced significantly by the laser irradiation. This was true even for the lowest fluence and shortest period of irradiation tested. Thus, the results of the experiment showed that even a low power pulsed laser irradiation of 0.013 J cm‐2 for 2 s can cause significant damage to fouling barnacle larvae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号